Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 299, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515031

RESUMO

BACKGROUND: Many studies have been performed to identify various genomic loci and genes associated with the meat quality in pigs. However, the full genetic architecture of the trait still remains unclear in part because of the lack of accurate identification of related structural variations (SVs) which resulted from the shortage of target breeds, the limitations of sequencing data, and the incompleteness of genome assemblies. The recent generation of a new pig breed with superior meat quality, called Nanchukmacdon, and its chromosome-level genome assembly (the NCMD assembly) has provided new opportunities. RESULTS: By applying assembly-based SV calling approaches to various genome assemblies of pigs including Nanchukmacdon, the impact of SVs on meat quality was investigated. Especially, by checking the commonality of SVs with other pig breeds, a total of 13,819 Nanchukmacdon-specific SVs (NSVs) were identified, which have a potential effect on the unique meat quality of Nanchukmacdon. The regulatory potentials of NSVs for the expression of nearby genes were further examined using transcriptome- and epigenome-based analyses in different tissues. CONCLUSIONS: Whole-genome comparisons based on chromosome-level genome assemblies have led to the discovery of SVs affecting meat quality in pigs, and their regulatory potentials were analyzed. The identified NSVs will provide new insights regarding genetic architectures underlying the meat quality in pigs. Finally, this study confirms the utility of chromosome-level genome assemblies and multi-omics analysis to enhance the understanding of unique phenotypes.


Assuntos
Genoma , Genômica , Suínos/genética , Animais , Carne/análise , Fenótipo , Cromossomos
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37925372

RESUMO

Genomic imprinting plays critical roles during the development of mammalian species and underlying epigenetic mechanisms frequently involve long non-coding RNAs (lncRNAs). The paternal transcription of the antisense Igf2r RNA noncoding (Airn) is responsible for paternal silencing of the mouse insulin-like growth factor 2 receptor (Igf2r) gene and maternal Igf2r expression. Although the corresponding maternal DNA methylation imprint is conserved in humans and pigs, the orthologous AIRN lncRNA has been identified in humans but not in pigs. Here, we aimed to examine imprinted allelic expression of the porcine AIRN lncRNA along with a corresponding differentially methylated region (DMR) and to analyze allelic expression of AIRN and IGF2R in pigs. By comparing parthenogenetic and control porcine embryos, we identified a maternally methylated DMR and a significantly higher expression of AIRN lncRNA in control embryos (P < 0.05) indicating its paternal expression. Further analyses revealed that the expression of AIRN lncRNA was enriched in the pig brain and its subregions, and it was monoallelically expressed; whereas, IGF2R was expressed biallelically suggesting an absence of allele-specific transcriptional regulation. Our findings will lead to further investigations into the role of the imprinted porcine AIRN lncRNA during pig development.


Genomic imprinting is important for the development of mammals and long non-coding RNAs are often involved in the imprinting process. In mice, Airn encodes a long non-coding RNA that is imprinted, and therefore, transcribed only from the paternal allele. This paternal transcription of Airn interferes with the adjacent Igf2r promoter, leading to maternal expression of Igf2r. In pigs, the orthologous AIRN has not been identified as well as its imprinting. In the current study, we report porcine AIRN and allelic expression of both AIRN and IGF2R using our parthenogenetic embryo models and various normal pig tissues.


Assuntos
RNA Longo não Codificante , Humanos , Animais , Camundongos , Suínos/genética , RNA Longo não Codificante/genética , Metilação de DNA , Impressão Genômica , Epigênese Genética , Alelos , Mamíferos/genética
3.
Sci Data ; 10(1): 761, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923776

RESUMO

As plentiful high-quality genome assemblies have been accumulated, reference-guided genome assembly can be a good approach to reconstruct a high-quality assembly. Here, we present a chromosome-level genome assembly of the Korean crossbred pig called Nanchukmacdon (the NCMD assembly) using the reference-guided assembly approach with short and long reads. The NCMD assembly contains 20 chromosome-level scaffolds with a total size of 2.38 Gbp (N50: 138.77 Mbp). Its BUSCO score is 93.1%, which is comparable to the pig reference assembly, and a total of 20,588 protein-coding genes, 8,651 non-coding genes, and 996.14 Mbp of repetitive elements are annotated. The NCMD assembly was also used to close many gaps in the pig reference assembly. This NCMD assembly and annotation provide foundational resources for the genomic analyses of pig and related species.


Assuntos
Cromossomos , Genoma , Sus scrofa , Suínos , Animais , Cromossomos/genética , Genômica , Anotação de Sequência Molecular , República da Coreia , Sus scrofa/genética , Suínos/genética
4.
J Anim Sci Technol ; 65(3): 511-518, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332282

RESUMO

This study examined the association between functional sequence variants (FSVs) of myosin heavy chain 3 (MYH3) genotypes and collagen content in a Landrace and Jeju native pig (JNP) crossbred population. Four muscles (Musculus longissimus dorsi, Musculus semimembranosus, Musculus triceps brachii, and Musculus biceps femoris) were used for the analysis of meat collagen content, and the same animals were genotyped for the FSVs of the MYH3 gene by using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism). Three FSVs of MYH3 genotypes were identified and had genotype frequencies of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively. QQ animals for the FSVs of the MYH3 genotypes showed higher collagen content in their M. longissimus dorsi (p < 0.001), M. semimembranosus (p < 0.001), M. triceps brachii (p < 0.001), and M. biceps femoris (p < 0.001) than qq homozygous animals. After the validation of this result in other independent populations, the FSVs of MYH3 genotypes can be a valuable genetic marker for improving collagen content in porcine muscles and can also be applied to increase the amount of collagen for biomedical purposes.

5.
Front Genet ; 13: 920641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938007

RESUMO

In mammals, genomic imprinting operates via gene silencing mechanisms. Although conservation of the imprinting mechanism at the H19/IGF2 locus has been generally described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated. Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent hepatic mono- to biallelic conversion, and reorganization of topologically associating domains at the porcine H19/IGF2 locus for better translation to human and animal research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of normal and parthenogenetic porcine embryos revealed the paternally hypermethylated H19 differentially methylated region and paternal expression of IGF2. Using a polymorphism-based approach and omics datasets from chromatin immunoprecipitation sequencing (ChIP-seq), whole-genome sequencing (WGS), RNA-seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements in the liver were distinguished from those in the muscle where the porcine IGF2 transcript was monoallelically expressed. The IGF2 transcript from the liver was biallelically expressed at later developmental stages in both pigs and humans. Chromatin interaction was less frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with biallelic conversion through alternative promoter usage and chromatin remodeling. Our integrative omics analyses of genome, epigenome, and transcriptome provided a comprehensive view of imprinting status at the H19/IGF2 cluster.

7.
PLoS One ; 17(5): e0263035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35587479

RESUMO

The porcine immune system has an important role in pre-clinical studies together with understanding the biological response mechanisms before entering into clinical trials. The size distribution of the Korean minipig is an important feature that make this breed ideal for biomedical research and safe practice in post clinical studies. The extremely tiny (ET) minipig serves as an excellent model for various biomedical research studies, but the comparatively frail and vulnerable immune response to the environment over its Large (L) size minipig breed leads to additional after born care. To overcome this pitfall, comparative analysis of the genomic regions under selection in the L type breed could provide a better understanding at the molecular level and lead to the development of an enhanced variety of ET type minipig. In this study, we utilized whole genome sequencing (WGS) to identify traces of artificial selection and integrated them with transcriptome data generated from blood samples to find strongly selected and differentially expressed genes of interest. We identified a total of 35 common genes among which 7 were differentially expressed and showed selective sweep in the L type over the ET type minipig breed. The stabilization of these genes were further confirmed using nucleotide diversity analysis, and these genes could serve as potential biomarkers for the development of a better variety of ET type pig breed.


Assuntos
Cruzamento , Genoma , Animais , Genômica , Imunidade , Suínos/genética , Porco Miniatura/genética
8.
BMC Genomics ; 22(1): 801, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743693

RESUMO

BACKGROUND: DNA methylation and demethylation at CpG islands is one of the main regulatory factors that allow cells to respond to different stimuli. These regulatory mechanisms help in developing tissue without affecting the genomic composition or undergoing selection. Liver and backfat play important roles in regulating lipid metabolism and control various pathways involved in reproductive performance, meat quality, and immunity. Genes inside these tissue store a plethora of information and an understanding of these genes is required to enhance tissue characteristics in the future generation. RESULTS: A total of 16 CpG islands were identified, and they were involved in differentially methylation regions (DMRs) as well as differentially expressed genes (DEGs) of liver and backfat tissue samples. The genes C7orf50, ACTB and MLC1 in backfat and TNNT3, SIX2, SDK1, CLSTN3, LTBP4, CFAP74, SLC22A23, FOXC1, GMDS, GSC, GATA4, SEMA5A and HOXA5 in the liver, were categorized as differentially-methylated. Subsequently, Motif analysis for DMRs was performed to understand the role of the methylated motif for tissue-specific differentiation. Gene ontology studies revealed association with collagen fibril organization, the Bone Morphogenetic Proteins (BMP) signaling pathway in backfat and cholesterol biosynthesis, bile acid and bile salt transport, and immunity-related pathways in methylated genes expressed in the liver. CONCLUSIONS: In this study, to understand the role of genes in the differentiation process, we have performed whole-genome bisulfite sequencing (WGBS) and RNA-seq analysis of Nanchukmacdon pigs. Methylation and motif analysis reveals the critical role of CpG islands and transcriptional factors binding site (TFBS) in guiding the differential patterns. Our findings could help in understanding how methylation of certain genes plays an important role and can be used as biomarkers to study tissue specific characteristics.


Assuntos
Metilação de DNA , Genoma , Animais , Ilhas de CpG , Fígado/metabolismo , RNA-Seq , Suínos/genética
9.
Genes (Basel) ; 12(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573305

RESUMO

Fatty acid (FA) composition is one of the most important parameters for the assessment of meat quality in pigs. The FA composition in pork can also affect human health. Our aim was to identify quantitative trait loci (QTLs) and positional candidate genes affecting the FA profile of the longissimus dorsi muscle in a large F2 intercross between Landrace and Korean native pigs comprising 1105 F2 progeny by genome-wide association studies (GWAS) and post-GWAS high-resolution mapping analyses. We performed GWAS using the PorcineSNP60K BeadChip and a linear mixed model. Four genome-wide significant QTL regions in SSC8, SSC12, SSC14, and SSC16 were detected (p < 2.53 × 10-7). Several co-localizations of QTLs in SSC12 for oleic acid, linoleic acid, arachidonic acid, monounsaturated FAs, polyunsaturated FAs, and the polyunsaturated/saturated FA ratio were observed. To refine the QTL region in SSC12, a linkage and linkage disequilibrium analysis was applied and could narrow down the critical region to a 0.749 Mb region. Of the genes in this region, GAS7, MYH2, and MYH3 were identified as strong novel candidate genes based on further conditional association analyses. These findings provide a novel insight into the genetic basis of FA composition in pork and could contribute to the improvement of pork quality.


Assuntos
Estudo de Associação Genômica Ampla
10.
Sci Rep ; 11(1): 7219, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785872

RESUMO

Pig as a food source serves daily dietary demand to a wide population around the world. Preference of meat depends on various factors with muscle play the central role. In this regards, selective breeding abled us to develop "Nanchukmacdon" a pig breeds with an enhanced variety of meat and high fertility rate. To identify genomic regions under selection we performed whole-genome resequencing, transcriptome, and whole-genome bisulfite sequencing from Nanchukmacdon muscles samples and used published data for three other breeds such as Landrace, Duroc, Jeju native pig and analyzed the functional characterization of candidate genes. In this study, we present a comprehensive approach to identify candidate genes by using multi-omics approaches. We performed two different methods XP-EHH, XP-CLR to identify traces of artificial selection for traits of economic importance. Moreover, RNAseq analysis was done to identify differentially expressed genes in the crossed breed population. Several genes (UGT8, ZGRF1, NDUFA10, EBF3, ELN, UBE2L6, NCALD, MELK, SERP2, GDPD5, and FHL2) were identified as selective sweep and differentially expressed in muscles related pathways. Furthermore, nucleotide diversity analysis revealed low genetic diversity in Nanchukmacdon for identified genes in comparison to related breeds and whole-genome bisulfite sequencing data shows the critical role of DNA methylation pattern in identified genes that leads to enhanced variety of meat. This work demonstrates a way to identify the molecular signature and lays a foundation for future genomic enabled pig breeding.


Assuntos
Genômica , Suínos/genética , Animais , Cruzamento , Genômica/métodos , Músculos/metabolismo , Filogenia , Carne de Porco , Seleção Genética , Transcriptoma , Sequenciamento Completo do Genoma
11.
G3 (Bethesda) ; 10(11): 4037-4047, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32878957

RESUMO

In mammals, imprinted genes often exist in the form of clusters in specific chromosome regions. However, in pigs, genomic imprinting of a relatively few genes and clusters has been identified, and genes within or adjacent to putative imprinted clusters need to be investigated including those at the SGCE/PEG10 locus. The objective of this study was to, using porcine parthenogenetic embryos, investigate imprinting status of genes within the genomic region spans between the COL1A2 and ASB4 genes in chromosome 9. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were conducted with normal and parthenogenetic embryos, and methylome and transcriptome were analyzed. As a result, differentially methylated regions (DMRs) between the embryos were identified, and parental allele-specific expressions of the SGCE and PEG10 genes were verified. The pig imprinted interval was limited between SGCE and PEG10, since both the COL1A2 and CASD1 genes at the centromere-proximal region and the genes between PPP1R9A and ASB4 toward the telomere were non-imprinted and biallelically expressed. Consequently, our combining analyses of methylome, transcriptome, and informative polymorphisms revealed the boundary of imprinting cluster at the SGCE/PEG10 locus in pig chromosome 9 and consolidated the landscape of genomic imprinting in pigs.


Assuntos
Epigenoma , Impressão Genômica , Animais , Metilação de DNA , Partenogênese/genética , Análise de Sequência de RNA , Suínos/genética , Transcriptoma
12.
Genes (Basel) ; 11(3)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245072

RESUMO

Until recently, genome-scale phasing was limited due to the short read sizes of sequence data. Though the use of long-read sequencing can overcome this limitation, they require extensive error correction. The emergence of technologies such as 10X genomics linked read sequencing and Hi-C which uses short-read sequencers along with library preparation protocols that facilitates long-read assemblies have greatly reduced the complexities of genome scale phasing. Moreover, it is possible to accurately assemble phased genome of individual samples using these methods. Therefore, in this study, we compared three phasing strategies which included two sample preparation methods along with the Long Ranger pipeline of 10X genomics and HapCut2 software, namely 10X-LG, 10X-HapCut2, and HiC-HapCut2 and assessed their performance and accuracy. We found that the 10X-LG had the best phasing performance amongst the method analyzed. They had the highest phasing rate (89.6%), longest adjusted N50 (1.24 Mb), and lowest switch error rate (0.07%). Moreover, the phasing accuracy and yield of the 10X-LG stayed over 90% for distances up to 4 Mb and 550 Kb respectively, which were considerably higher than 10X-HapCut2 and Hi-C Hapcut2. The results of this study will serve as a good reference for future benchmarking studies and also for reference-based imputation in Hanwoo.


Assuntos
Bovinos/genética , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Genômica/normas , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Software/normas , Sequenciamento Completo do Genoma/normas
13.
PLoS Genet ; 15(10): e1008279, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603892

RESUMO

Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.


Assuntos
Adipogenia/genética , Proteínas do Citoesqueleto/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Miosinas/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Cruzamento , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Carne , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Motivos de Nucleotídeos , Sus scrofa/genética , Sus scrofa/metabolismo , Suínos
14.
Asian-Australas J Anim Sci ; 32(12): 1816-1825, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31208168

RESUMO

OBJECTIVE: We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. METHODS: We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of SNPs in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. RESULTS: Because of the low genome coverage (~4x) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (P &lt; 0.05) including three previously reported and four newly identified genes in this study. CONCLUSION: The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.

15.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274168

RESUMO

Myosin heavy chain (MyHC) isoforms consist of Myh7, Myh2, Myh1, and Myh4, which are expressed in skeletal muscle tissues during postnatal development. These genes influence the contraction⁻relaxation activity in skeletal muscles and are involved in determining muscle composition such as the proportion of fast-to-slow and/or slow-to-fast fiber types. Among them, Myh1 is associated with skeletal muscle contraction and is involved in both slow-to-fast and fast-to-slow transition. However, the muscle transition mechanism is not well understood. For this study, we first produced porcine Myh1 transgenic (TG) mice to study whether the ectopic expressed porcine Myh1 gene had any effects on muscle composition, especially on slow-type muscle components. Our results showed that the factors associated with slow muscles, such as Myh7, Myoglobin, Troponin (slow-type units), and cytochrome C, were highly expressed in the quadriceps muscles of Myh1 transgenic mice. Furthermore, the ectopic porcine MYH1 protein was located only in the slow-type muscle fibers of the quadriceps muscles in Myh1 transgenic mice. In physical endurance tests, Myh1 transgenic mice ran longer and further on a treadmill than wild-type (WT) mice. These data fully supported our hypothesis that Myh1 is associated with slow muscle composition, with overexpression of Myh1 in muscle tissues possibly being a new key in modulating muscle fiber types. Our study provides a better understanding of muscle composition metabolism, physical mobility, and genetic factors in muscle fatigue.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Condicionamento Físico Animal , Resistência Física , Animais , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cadeias Pesadas de Miosina/genética , Suínos
16.
Asian-Australas J Anim Sci ; 31(8): 1098-1102, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29642687

RESUMO

OBJECTIVE: Temperament can be defined as a type of behavioral tendency that appears in a relatively stable manner in responses to various external stimuli over time. The aim of this study was to estimate genetic parameters for the records of temperament testing that are used to improve the temperament of Jeju crossbred (Jeju×Thoroughbred) horses. METHODS: This study was conducted using 205 horses (101 females and 104 males) produced between 2010 and 2015. The experimental animals were imprinted and tamed according to the Manual for Horse Taming and Evaluation for Therapeutic Riding Horses and evaluated according to the categories for temperament testing (gentleness, patience, aggressiveness, sensitivity, and friendliness) between 15 months and 18 months of age. Each category was scored on a five-point linear scale. Genetic parameters for the test categories were analyzed using a multi-trait mixed model with repeated records. The ASReml program was used to analyze the data. RESULTS: The heritability of gentleness, patience, aggressiveness, sensitivity and friendliness ranged from 0.08 to 0.53. The standard errors of estimated heritability ranged from 0.13 to 0.17. The test categories showed high genetic correlations with each other, ranging from 0.96 to 0.99 and high repeatability, ranging from 0.70 to 0.73. CONCLUSION: The results of this study showed that the test categories had moderate heritability and high genetic correlations, but additional studies may be necessary to use the results for the improvement programs of the temperament of Jeju crossbred horses.

17.
Asian-Australas J Anim Sci ; 30(8): 1061-1065, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28111443

RESUMO

OBJECTIVE: This study was conducted to locate quantitative trait loci (QTL) influencing fatty acid (FA) composition in a large F2 intercross between Landrace and Korean native pigs. METHODS: Eighteen FA composition traits were measured in more than 960 F2 progeny. All experimental animals were genotyped with 165 microsatellite markers located throughout the pig autosomes. RESULTS: We detected 112 QTLs for the FA composition; Forty seven QTLs reached the genome-wide significant threshold. In particular, we identified a cluster of highly significant QTLs for FA composition on SSC12. QTL for polyunsaturated fatty acid on pig chromosome 12 (F-value = 97.2 under additive and dominance model, nominal p-value 3.6×10-39) accounted for 16.9% of phenotypic variance. In addition, four more QTLs for C18:1, C18:2, C20:4, and monounsaturated fatty acids on the similar position explained more than 10% of phenotypic variance. CONCLUSION: Our findings of a major QTL for FA composition presented here could provide helpful information to locate causative variants to improve meat quality traits in pigs.

18.
Asian-Australas J Anim Sci ; 30(8): 1081-1085, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28111449

RESUMO

OBJECTIVE: Previously, we reported quantitative trait loci (QTLs) affecting backfat thickness (BFT) traits on pig chromosome 5 (SW1482-SW963) in an F2 intercross population between Landrace and Korean native pigs. The aim of this study was to evaluate glutamate receptor-interacting protein 1 (GRIP1) as a positional candidate gene underlying the QTL affecting BFT traits. METHODS: Genotype and phenotype analyses were performed using the 1,105 F2 progeny. A mixed-effect linear model was used to access association between these single nucleotide polymorphism (SNP) markers and the BFT traits in the F2 intercross population. RESULTS: Highly significant associations of two informative SNPs (c.2442 T>C, c.3316 C>G [R1106G]) in GRIP1 with BFT traits were detected. In addition, the two SNPs were used to construct haplotypes that were also highly associated with the BFT traits. CONCLUSION: The SNPs and haplotypes of the GRIP1 gene determined in this study can contribute to understand the genetic structure of BFT traits in pigs.

19.
Asian-Australas J Anim Sci ; 29(12): 1675-1681, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27492348

RESUMO

The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an F2 resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the F2 intercross population. Among them, the MCV level was highly significant (nominal p = 9.8×10-9) in association with the DYRK1A-SNP1 (c.2989 G

20.
Mol Genet Genomics ; 291(2): 831-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606930

RESUMO

Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-ß), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-ß, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica/métodos , Longevidade/genética , Transcriptoma/genética , Tecido Adiposo/metabolismo , Animais , Fator de Crescimento Epidérmico/biossíntese , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Fígado/metabolismo , Camundongos , Oxirredução , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Repressoras/biossíntese , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...